555 research outputs found

    Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.BACKGROUND: The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. METHOD: A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. RESULTS: Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US697millionwasspenttofundtheprojects,ofwhich35 697 million was spent to fund the projects, of which 35% ((US 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. CONCLUSION: The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research

    Recommendations for Medical Management of Adult Lead Exposure

    Get PDF
    Research conducted in recent years has increased public health concern about the toxicity of lead at low dose and has supported a reappraisal of the levels of lead exposure that may be safely tolerated in the workplace. In this article, which appears as part of a mini-monograph on adult lead exposure, we summarize a body of published literature that establishes the potential for hypertension, effects on renal function, cognitive dysfunction, and adverse female reproductive outcome in adults with whole-blood lead concentrations < 40 μg/dL. Based on this literature, and our collective experience in evaluating lead-exposed adults, we recommend that individuals be removed from occupational lead exposure if a single blood lead concentration exceeds 30 μg/dL or if two successive blood lead concentrations measured over a 4-week interval are ≥ 20 μg/dL. Removal of individuals from lead exposure should be considered to avoid long-term risk to health if exposure control measures over an extended period do not decrease blood lead concentrations to < 10 μg/dL or if selected medical conditions exist that would increase the risk of continued exposure. Recommended medical surveillance for all lead-exposed workers should include quarterly blood lead measurements for individuals with blood lead concentrations between 10 and 19 μg/dL, and semiannual blood lead measurements when sustained blood lead concentrations are < 10 μg/dL. It is advisable for pregnant women to avoid occupational or avocational lead exposure that would result in blood lead concentrations > 5 μg/dL. Chelation may have an adjunctive role in the medical management of highly exposed adults with symptomatic lead intoxication but is not recommended for asymptomatic individuals with low blood lead concentrations

    Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data

    Get PDF
    Using single-nucleotide polymorphism (SNP) genotypes from the 1000 Genomes Project pilot3 data provided for Genetic Analysis Workshop 17 (GAW17), we applied Bayesian network structure learning (BNSL) to identify potential causal SNPs associated with the Affected phenotype. We focus on the setting in which target genes that harbor causal variants have already been chosen for resequencing; the goal was to detect true causal SNPs from among the measured variants in these genes. Examining all available SNPs in the known causal genes, BNSL produced a Bayesian network from which subsets of SNPs connected to the Affected outcome were identified and measured for statistical significance using the hypergeometric distribution. The exploratory phase of analysis for pooled replicates sometimes identified a set of involved SNPs that contained more true causal SNPs than expected by chance in the Asian population. Analyses of single replicates gave inconsistent results. No nominally significant results were found in analyses of African or European populations. Overall, the method was not able to identify sets of involved SNPs that included a higher proportion of true causal SNPs than expected by chance alone. We conclude that this method, as currently applied, is not effective for identifying causal SNPs that follow the simulation model for the GAW17 data set, which includes many rare causal SNPs

    An essential function for the ATR-Activation-Domain (AAD) of TopBP1 in mouse development and cellular senescence

    Get PDF
    ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins – Dpb11TopBP1, Ddc1Rad9 and Dna2 - all interact with and activate Mec1ATR. Each contains an ATR activation domain (ADD) that interacts directly with the Mec1ATR:Ddc2ATRIP complex. Any of the Dpb11TopBP1, Ddc1Rad9 or Dna2 ADDs is sufficient to activate Mec1ATR in vitro. All three can also independently activate Mec1ATR in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development

    Accelerated search for biomolecular network models to interpret high-throughput experimental data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables.</p> <p>Results</p> <p>Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics.</p> <p>Conclusion</p> <p>Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular data sets. This approach yields multiple alternative models that are consistent with the data, yielding a constrained set of hypotheses that can be used to optimally design subsequent experiments.</p

    Renal malformations associated with mutations of developmental genes: messages from the clinic

    Get PDF
    Renal tract malformations (RTMs) account for about 40% of children with end-stage renal failure. RTMs can be caused by mutations of genes normally active in the developing kidney and lower renal tract. Moreover, some RTMs occur in the context of multi-organ malformation syndromes. For these reasons, and because genetic testing is becoming more widely available, pediatric nephrologists should work closely with clinical geneticists to make genetic diagnoses in children with RTMs, followed by appropriate family counseling. Here we highlight families with renal cysts and diabetes, renal coloboma and Fraser syndromes, and a child with microdeletion of chromosome 19q who had a rare combination of malformations. Such diagnoses provide families with often long-sought answers to the question “why was our child born with kidney disease”. Precise genetic diagnoses will also help to define cohorts of children with RTMs for long-term clinical outcome studies

    RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in cancer biology is what changes cause a healthy cell to form a tumor. Gene expression data could provide insight into this question, but it is difficult to distinguish between a gene that causes a change in gene expression from a gene that is affected by this change. Furthermore, the proteins that regulate gene expression are often themselves not regulated at the transcriptional level. Here we propose a Bayesian modeling framework we term RegNetB that uses mechanistic information about the gene regulatory network to distinguish between factors that cause a change in expression and genes that are affected by the change. We test this framework using human gene expression data describing localized prostate cancer progression.</p> <p>Results</p> <p>The top regulatory relationships identified by RegNetB include the regulation of RLN1, RLN2, by PAX4, the regulation of ACPP (PAP) by JUN, BACH1 and BACH2, and the co-regulation of PGC and GDF15 by MAZ and TAF8. These target genes are known to participate in tumor progression, but the suggested regulatory roles of PAX4, BACH1, BACH2, MAZ and TAF8 in the process is new.</p> <p>Conclusion</p> <p>Integrating gene expression data and regulatory topologies can aid in identifying potentially causal mechanisms for observed changes in gene expression.</p
    corecore